A sodium ion intercalation material: a comparative study of amorphous and crystalline FePO4.

نویسندگان

  • Wei Wang
  • Shubo Wang
  • Handong Jiao
  • Pan Zhan
  • Shuqiang Jiao
چکیده

Due to their low cost, high abundance and eco-friendly features, Na-ion batteries are becoming alternative choices for rechargeable batteries, especially in large scale applications. Generally, the well-crystallized materials have many advantages over amorphous materials, such as long cycle life, high rate performance and other electrochemical properties. However, the amorphous FePO4 we report here exhibits outstanding cycling stability and rate performance which are derived from its amorphous nature and wafer-like porous morphology. A comparative study of amorphous and crystalline FePO4 has been carried out as cathode materials for Na-ion batteries. The present study not only reports a synthetic method which is facile, inexpensive, and scalable for mass production, but it also motivates further exploration of other amorphous materials for Na-ion batteries.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Kinetically controlled formation of uniform FePO4 shells and their potential for use in high-performance sodium ion batteries

Amorphous iron phosphates are potential cathode materials for sodium ion batteries. The amorphous FePO4 matrix is able to insert/extract sodium ions reversibly without apparent structural degradation, resulting in stable performance during the charge/discharge process. However, the extremely low electronic conductivity of FePO4 itself becomes a formidable obstacle for its application as a high-...

متن کامل

The transformation from amorphous iron phosphate to sodium iron phosphate in sodium-ion batteries.

In this article, the structure and electrochemical performance of sodiated iron phosphate (FePO4) synthesized by the micro-emulsion technique have been investigated by X-ray diffraction (XRD), high resolution transmission electron microscopy (HRTEM) and electrochemical measurement. The results reveal that amorphous FePO4 could be transformed into crystallite sodium iron phosphate (NaFePO4) duri...

متن کامل

Porous amorphous FePO4 nanoparticles connected by single-wall carbon nanotubes for sodium ion battery cathodes.

Sodium ion batteries (SIBs) are promising candidates for the applications of large-scale energy storage due to their cost-effective and environmental-friendly characteristics. Nevertheless, it remains a practical challenge to find a cathode material of SIBs showing ideal performance (capacity, reversibility, etc.). We report here a nanocomposite material of amorphous, porous FePO(4) nanoparticl...

متن کامل

Fabricating genetically engineered high-power lithium-ion batteries using multiple virus genes.

Development of materials that deliver more energy at high rates is important for high-power applications, including portable electronic devices and hybrid electric vehicles. For lithium-ion (Li+) batteries, reducing material dimensions can boost Li+ ion and electron transfer in nanostructured electrodes. By manipulating two genes, we equipped viruses with peptide groups having affinity for sing...

متن کامل

Atomistic insights into the conversion reaction in iron fluoride: a dynamically adaptive force field approach.

Nanoscale metal fluorides are promising candidates for high capacity lithium ion batteries, in which a conversion reaction upon exposure to Li ions enables access to the multiple valence states of the metal cation. However, little is known about the molecular mechanisms and the reaction pathways in conversion that relate to the need for nanoscale starting materials. To address this reaction and...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical chemistry chemical physics : PCCP

دوره 17 6  شماره 

صفحات  -

تاریخ انتشار 2015